Ionic strength and composition govern the elasticity of biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy.
نویسندگان
چکیده
Infrared (IR) spectroscopy was used to quantify the ion mixture effect of seawater (SW), particularly the contribution of Mg(2+) and Ca(2+) as dominant divalent cations, on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-posphocholine (DMPC) bilayers. The changed character of the main transition at 24 °C from sharp to gradual in films and the 1 °C shift of the main transition temperature in dispersions reflect the interactions of lipid headgroups with the ions in SW. Force spectroscopy was used to quantify the nanomechanical hardness of a DMPC supported lipid bilayer (SLB). Considering the electrostatic and ion binding equilibrium contributions while systematically probing the SLB in various salt solutions, we showed that ionic strength had a decisive influence on its nanomechanics. The mechanical hardness of DMPC SLBs in the liquid crystalline phase linearly increases with the increasing fraction of all ion-bound lipids in a series of monovalent salt solutions. It also linearly increases in the gel phase but almost three times faster (the corresponding slopes are 4.9 nN/100 mM and 13.32 nN/100 mM, respectively). We also showed that in the presence of divalent ions (Ca(2+) and Mg(2+)) the bilayer mechanical hardness was unproportionally increased, and that was accompanied with the decrease of Na(+) ion and increase of Cl(-) ion bound lipids. The underlying process is a cooperative and competitive ion binding in both the gel and the liquid crystalline phase. Bilayer hardness thus turned out to be very sensitive to ionic strength as well as to ionic composition of the surrounding medium. In particular, the indicated correlation helped us to emphasize the colligative properties of SW as a naturally occurring complex ion mixture.
منابع مشابه
Preparation and Physical Characterization of Sulfonated Poly (Ether Ether Ketone) and Polypyrrole Composite Membrane
Sulfoanted poly(ether ether ketone) membranes were prepared by the sulfonating agent sulfuric acid. These membranes were modifed by incorporating conducting polymer polypyrrole in order to increase the ionic conductivity and reduce the methanol transmission rate. The modifed composite membranes were then compared on the basis of ionic conductivity, methanol transmission...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملNanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior
Objective(s): Fabrication of scaffolds with improved mechanical properties and favorable cellular compatibility is crucial for many tissue engineering applications. This study was aimed to improve mechanical and biological properties of polycaprolactone (PCL), which is a common biocompatible and biodegradable synthetic polymer in tissue engineering. Nanofibrillated chitosan (NC) was used as a n...
متن کاملInsight on the Lateral Organization and the Size Distribution of the Gel and Fluid Clusters in DMPC/DSPC Lipid Bilayers
The organization and compartmentalization of lipid membranes are exciting key phenomena demonstrating that the lipid bilayer is not just a structureless solvent [5]. This is suggested to be of critical importance for many of their functions. Both theoretical findings and experimental data provide evidence that the lateral composition of a membrane consists of micrometer-scale lipid domains [1,8...
متن کاملDirect DNA Immobilization onto a Carbon Nanotube Modified Electrode: Study on the Influence of pH and Ionic Strength
Over the past years, DNA biosensors have been developed to analyze DNA interaction and damage that have important applications in biotechnological researches. The immobilization of DNA onto a substrate is one key step for construction of DNA electrochemical biosensors. In this report, a direct approach has been described for immobilization of single strand DNA onto carboxylic acid-functionalize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry and physics of lipids
دوره 186 شماره
صفحات -
تاریخ انتشار 2015